Skip to main content

Posts

Showing posts from December, 2009

Master Slave JK Flip Flop

library ieee; use ieee.std_logic_1164.all; entity master_slave_jk is port(j,k,clk:in std_logic;q1,q1x,z1x:inout std_logic; q2,q2x,z2x: inout std_logic); end master_slave_jk; architecture arc of master_slave_jk is begin process(clk) begin if clk='1' then z1x<=(j and (not q2)) or ((not k)and q2); q1<=z1x after 5 ns; q1x<=not z1x after 5ns; else z2x<=(q1 and (not q2)) or ((not q1x)and q2); q2<=z2x after 5 ns; q2x<=not z2x after 5ns; end if; end process; end arc;

VHDL code for JK Flip Flop

library ieee; use ieee.std_logic_1164.all; entity bejoy_jkff is port(j,k,clk:in std_logic;q,q1,z:inout std_logic); end bejoy_jkff; architecture arc of bejoy_jkff is begin process(clk) begin if clk='1' then z q q1 end if; end process; end arc;

VHDL code for T Flip Flop

library ieee; use ieee.std_logic_1164.all; entity bejoy_tff is port(t,clk:in std_logic;q,q1,z:inout std_logic); end bejoy_tff; architecture arc of bejoy_tff is begin process(clk) begin if clk='1' then z q q1 end if; end process; end arc;

VHDL code for SR Flip Flop

library ieee; use ieee.std_logic_1164.all; entity bejoy_rsff is port(s,r,clk:in std_logic;q,q1,z:inout std_logic); end bejoy_rsff; architecture arc of bejoy_rsff is begin process(clk) begin if clk='1' then z q q1 end if; end process; end arc;

VHDL code for D Flip Flop

library ieee; use ieee.std_logic_1164.all; entity bejoy_dff is port(d,clock :in std_logic; Q:out std_logic); end bejoy_dff; architecture arc of bejoy_dff is begin process(clock) begin if clock'event and clock='1' then Q end if; end process; end arc;

VHDL code for 3x8 Decoder

library ieee; use ieee.std_logic_1164.all; entity bejoy_3x8 is port(a,b,c:in std_logic; d0,d1,d2,d3,d4,d5,d6,d7:out std_logic); end bejoy_3x8; architecture arc of bejoy_3x8 is begin d0 d1 d2 d3 d4 d5 d6 d7 end arc;

VHDL code for 1x4 Demultiplexer using structural style

library IEEE; use IEEE.std_logic_1164.all; entity bejoy_1x4 is port(s1,s2,data_in : in std_logic; d1,d2,d3,d4 : out std_logic); end bejoy_1x4; architecture arc of bejoy_1x4 is component dmux port(sx1,sx2,d : in std_logic; z1,z2 : out std_logic); end component; begin dmux1 : dmux port map(s1,s2,data_in,d1,d2); dmux2 : dmux port map(not s1,s2,data_in,d3,d4); end arc; library ieee; use ieee.std_logic_1164.all; entity dmux is port(sx1,sx2,d :in std_logic; z1,z2: out std_logic); end dmux; architecture arc of dmux is begin z1 z2 end arc;

VHDL code for 4x1 Multiplexer using structural style

library IEEE; use IEEE.std_logic_1164.all; entity bejoy_4x1 is port(s1,s2,d00,d01,d10,d11 : in std_logic; z_out : out std_logic); end bejoy_4x1; architecture arc of bejoy_4x1 is component mux port(sx1,sx2,d0,d1 : in std_logic; z : out std_logic); end component; component or_2 port(a,b : in std_logic; c : out std_logic); end component; signal intr1, intr2, intr3, intr4 : std_logic; begin mux1 : mux port map(s1,s2,d00,d01,intr1); mux2 : mux port map(not s1,s2, d10,d11,intr2); o1 : or_2 port map(intr1, intr2, z_out); end arc; library ieee; use ieee.std_logic_1164.all; entity mux is port(sx1,sx2,d0,d1 :in std_logic; z1,z2: inout std_logic; z: out std_logic); end mux; architecture arc of mux is begin z1 z2 z end arc; entity or_2 is port(a,b : in bit; c : out bit); end or_2; architecture arc of or_2 is begin c end arc;

VHDL code for Half Subtractor

library ieee; use ieee.std_logic_1164.all; entity bejoy_hs is port (x,y,en : in bit ; d,b : out bit; y1: inout bit); end bejoy_hs; architecture arc of bejoy_hs is begin process (en,y1) begin if en='1' then d y1 b end if; end process; end arc;

VHDL code for Full Adder using structural style

library IEEE; use IEEE.std_logic_1164.all; entity bejoy_fa is port(In1,In2,c_in : in std_logic; sum, c_out : out std_logic); end bejoy_fa; architecture arc of bejoy_fa is component half_adder port(a,b : in std_logic; sum, carry : out std_logic); end component; component or_2 port(a,b : in std_logic; c : out std_logic); end component; signal s1, s2, s3 : std_logic; begin H1: half_adder port map(a=>In1, b=>In2, sum=>s1, carry=>s3); H2: half_adder port map(a=>s1, b=>c_in, sum=>sum, carry=>s2); O1: or_2 port map(a=> s2, b=>s3, c=>c_out); end arc; entity half_adder is port (a,b : in bit ; sum,carry : out bit); end half_adder; architecture arc of half_adder is begin sum carry end arc; entity or_2 is port (a,b : in bit ; c : out bit); end or_2; architecture arc of or_2 is begin c end arc;

VHDL code for Basic Gates

AND Gate library ieee; use ieee.std_logic_1164.all; entity and_gate is port (a,b : in std_logic ; c : out std_logic); end and_gate; architecture arc of and_gate is begin c OR Gate library ieee; use ieee.std_logic_1164.all; entity or_gate is port (a,b : in std_logic ; c : out std_logic); end or_gate; architecture arc of or_gate is begin c NOT Gate library ieee; use ieee.std_logic_1164.all; entity not_gate is port (a: in std_logic ; b : out std_logic); end not_gate; architecture arc of not_gate is begin b NAND Gate library ieee; use ieee.std_logic_1164.all; entity nand_gate is port (a,b : in std_logic ; c : out std_logic); end nand_gate; architecture arc of nand_gate is begin c NOR Gate library ieee; use ieee.std_logic_1164.all; entity nor_gate is port (a,b : in std_logic ; c : out std_logic); end nor_gate; architecture arc of nor_gate is begin c XOR Gate library ieee; use ieee.std_logic_1164.all; entity xor_gate is port (a,b : in std_logic ; c : out std_logic); end xor_gate; architectur...